

# γ-谷氨酰半胱氨酸合成酶(γ-GCS)活性测定试剂盒

(货号: BP10228F 分光法 48 样 有效期: 3 个月)

### 一、指标介绍:

γ-谷氨酰半胱氨酸合成酶(γ-GCS, EC 6.3.2.2)是谷胱甘肽(GSH)合成中的限速酶,催化谷氨酸和半胱氨酸合成γ-谷氨酸半胱氨酸(γ-GC)。有研究表明该酶在细胞的氧化应激过程中具有一定作用。

在 ATP、镁离子存在下, $\gamma$ -GCS 催化谷氨酸和半胱氨酸合成 $\gamma$ -谷氨酰半胱氨酸( $\gamma$ -GC), 同时 ATP 去磷酸化产生无机磷分子,通过测定无机磷增加速率,即可计算出 $\gamma$ -GCS 活性。

### 二、测试盒组成和配制:

| 试剂组分 | 试剂规格                      | 存放温度   | 注意事项                                                                         |
|------|---------------------------|--------|------------------------------------------------------------------------------|
| 提取液  | 液体 50mL×1 瓶               | 4℃避光保存 |                                                                              |
| 试剂一  | 液体 30mL×1 瓶               | 4℃保存   |                                                                              |
| 试剂二  | 粉体 1 瓶                    | -20℃保存 | 1. 开盖前注意使粉体落入底部(可手动用一用);<br>2. 加入2.2mL的试剂一,混匀溶解备用;<br>3. 保存周期与试剂盒有效期相同。      |
| 试剂三  | 粉体 1 瓶                    | 4℃保存   | 1. 开盖前注意使粉体落入底部(可手动用一用);<br>2. 加入4.4mL的试剂一,混匀溶解备用;<br>3. 保存周期与试剂盒有效期相同。      |
| 试剂四  | 液体 10mL×1 瓶               | 4℃保存   |                                                                              |
| 试剂五  | A:粉体 1 瓶<br>B:液体 10mL×1 瓶 | 4℃避光保存 | 1. 临用前在试剂 A 中加 9.14mL 的 B 液,<br>再加 70.86mL 的蒸馏水,混匀溶解备用;<br>2. 保存周期与试剂盒有效期相同。 |
| 标准品  | 粉体 1 支                    | 4℃保存   | 1. 若重新做标曲,则用到该试剂;<br>2. 按照说明书中标曲制作步骤进行配制;<br>3. 溶解后的标品一周内用完。                 |

【注】:全程需无磷环境;试剂配置最好用新枪头和玻璃移液器等,也可用一次性塑料器皿,避免磷污染。

### 三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 比色皿、离心管、分光光度计、蒸馏水(去离子水、超纯水均可)。

### 四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

# 1、样本提取:

① 组织样本: 称取约 0.1g 组织(水分充足的样本可取 0.5g),加入 1mL 提取液,进行冰浴匀浆。  $4^{\circ}C \times 12000 rpm$  离心 10 min,取上清,置冰上待测。

【注】:若增加样本量,可按照组织质量(g):提取液体积(mL)为 1: $5\sim10$  的比例进行提取。

② 细菌/细胞样本: 先收集细菌或细胞到离心管内, 离心后弃上清; 取约 500 万细菌或细胞加入 1mL 提取液, 超声波破碎细菌或细胞(冰浴, 功率 200W, 超声 3s, 间隔 10s, 重复 30 次); 12000rpm 4°C离心 10min, 取上清, 置冰上待测。

【注】: 若增加样本量,可按照细菌/细胞数量(104):提取液(mL)为500~1000:1的比例进行提取。

网址: www.bpelisa.com

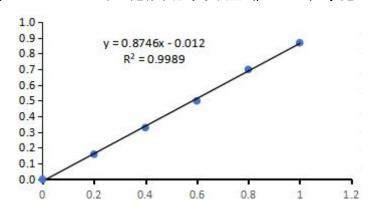


③ 液体样本:直接检测;若浑浊,离心后取上清检测。

#### 2、检测步骤:

- ① 分光光度计预热 30min 以上,调节波长至 700nm,蒸馏水调零。
- ② 所有试剂解冻至室温 (25°C), 在 EP 中依次加入:

| 试剂组分 (μL)                   | 测定管 | 对照管 |  |
|-----------------------------|-----|-----|--|
| 试剂一                         | 100 | 100 |  |
| 试剂二                         | 20  | 20  |  |
| 样本                          | 40  |     |  |
| 试剂三                         | 40  | 40  |  |
| 混匀后立即 37℃准确孵育 30min。        |     |     |  |
| 试剂四                         | 100 | 100 |  |
| 样本                          |     | 40  |  |
| 混匀,12000rpm,4℃离心 5min,上清液待测 |     |     |  |


③ 显色反应, 在 1mL 玻璃比色皿中加入:

| 上清液                          | 150 | 150 |  |  |
|------------------------------|-----|-----|--|--|
| 试剂五                          | 600 | 600 |  |  |
| 混匀,室温静置 3min,700nm 下读取各管吸光值, |     |     |  |  |
|                              |     |     |  |  |

△A=A 测定-A 对照(每个样本做一个自身对照)。

# 五、结果计算:

1、标准曲线方程: y = 0.8746x - 0.012, x 是标准品摩尔质量 ( $\mu mol/mL$ ), y 是 $\triangle A$ 。



# 2、按蛋白浓度计算:

定义: 每小时每毫克组织蛋白催化产生  $1\mu mol$  无机磷的量为一个酶活力单位。  $\gamma$ -GCS 酶活力( $\mu mol/h/mg$  prot)=  $[(\triangle A+0.012)\div 0.8746\times V2]\div (V1\times Cpr)\div T$  = $17.2\times(\triangle A+0.012)\div Cpr$ 

# 3、按样本鲜重计算:

定义:每小时每克组织催化产生 1 $\mu$ mol 无机磷的量为一个酶活力单位。  $\gamma$ -GCS 酶活力( $\mu$ mol/h/g 鲜重)= [( $\triangle$ A+0.012)÷0.8746×V2]÷(W× V1÷V)÷T =17.2×( $\triangle$ A+0.012)÷W

# 4、按细菌或细胞密度计算:

定义: 每小时每 1 万个细菌或细胞催化产生 1 $\mu$ mol 无机磷的量为一个酶活力单位。 γ-GCS 酶活力( $\mu$ mol/h /10<sup>4</sup> cell)= [( $\triangle$ A+0.012)÷0.8746×V2]÷(500×V1÷V)÷T =0.0343×( $\triangle$ A+0.012)

网址: www.bpelisa.com



# 5、液体中γ-GCS 活力计算:

定义:每小时每毫升液体催化产生  $1\mu mol \, T$ 机磷的量为一个酶活力单位。  $\gamma$ -GCS 酶活力  $(\mu mol/h/mL) = [(\triangle A+0.012) \div 0.8746 \times V2] \div V1 \div T = 17.2 \times (\triangle A+0.012)$ 

V---提取液体积, 1mL; V1---样本体积, 0.04mL; V2---酶促反应总体积, 0.3mL; T---反应时间,

1/2 小时; W---样本鲜重, g; 500---细菌或细胞总数, 500 万;

Cpr---样本蛋白质浓度,mg/mL;建议使用本公司的 BCA 蛋白含量检测试剂盒。

# 附:标准曲线制作过程:

1 标准品用 10mL 试剂一溶解, (母液需在两天内用),标准品母液浓度为 5μmol/mL。将母液用试剂一稀释成六个浓度梯度的标准品,例如: 0, 0.2, 0.4, 0.6, 0.8, 1. μmol/mL。也可根据实际样本调整标准品浓度。

2 标品稀释参照表如下:

| 吸取标准品母液 200uL,加入 800uL 蒸馏水,混匀得到 1μmol/mL 的标品稀释液待用。 |     |     |     |     |     |     |
|----------------------------------------------------|-----|-----|-----|-----|-----|-----|
| 标品浓度<br>μmol/mL                                    | 0   | 0.2 | 0.4 | 0.6 | 0.8 | 1   |
| 标品稀释液<br>uL                                        | 0   | 40  | 80  | 120 | 160 | 200 |
| 水 uL                                               | 200 | 160 | 120 | 80  | 40  | 0   |
| 各标准管混匀待用。                                          |     |     |     |     |     |     |

3 依据显色反应阶段测定管的加样表操作,根据结果,以各浓度吸光值减去 0 浓度吸光值,过 0 点制作标准曲线。

| 试剂名称 (μL)                    | 标准管 | 0浓度管(仅做一次) |  |
|------------------------------|-----|------------|--|
| 标品                           | 150 |            |  |
| 蒸馏水                          |     | 150        |  |
| 试剂五                          | 600 | 600        |  |
| 混匀,室温静置 3min,700nm 下读取各管吸光值, |     |            |  |

 $\triangle A=A$  测定-0 浓度管。

网址: www.bpelisa.com